General Meeting NB Members Authorized Inspection Agencies Owner-User Inspection Organizations Review Team Leaders Test Lab
 

  Email      Print
   Technical Articles
A Boiler: The Explosive Potential of a Bomb
Acoustic Emission Examination of Metal Pressure Vessels
Anatomy of a Catastrophic Boiler Accident
Austenitic Stainless Steel
Auto-Refrigeration
Basic Weld Inspection - Part 1
Basic Weld Inspection - Part 2
Black Liquor Recovery Boilers - An Introduction
Boiler Efficiency and Steam Quality: The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies
Boiler Logs Can Reduce Accidents
Boiler/Burner Combustion Air Supply Requirements and Maintenance
Carbon Monoxide Poisoning Preventable With Complete Inspection
Combustion Air Requirements:The Forgotten Element In Boiler Rooms
Creep and Creep Failures
Description of Construction and Inspection Procedure for Steam Locomotive and Fire Tube Boilers
Ensuring Safe Operation Of Vessels With Quick-Opening Closures
Environmental Heat Exchangers
Factors Affecting Inservice Cracking of Weld Zone in Corrosive Service
Failure Avoidance in Welded Fabrication
Finite Element Analysis of Pressure Vessels
Fuel Ash Corrosion
Fuel Firing Apparatus - Natural Gas
Grain Boundaries
Heat Treatment - What Is It?
How to Destroy a Boiler -- Part 1
How to Destroy a Boiler -- Part 2
How to Destroy a Boiler -- Part 3
Identifying Pressure Vessel Nozzle Problems
Inspection, Repair, and Alteration of Yankee Dryers
Inspection, What Better Place to Begin
Laminations Led to Incident
Lay-up of Heating Boilers
Liquid Penetrant Examination
Low Voltage Short Circuiting-GMAW
Low Water Cut-Off Technology
Low-Water Cutoff: A Maintenance Must
Magnetic Particle Examination
Maintaining Proper Boiler Inspections Through Proper Relationships
Microstructural Degradation
Miracle Fluid?
Organizing A Vessel, Tank, and Piping Inspection Program
Paper Machine Failure Investigation: Inspection Requirements Should Be Changed For Dryer Can
Pipe Support Performance as It Applies to Power Plant Safety and Reliability
Polymer Use for Boilers and Pressure Vessels
Pressure Vessel Fatigue
Pressure Vessels: Analyzing Change
Preventing Corrosion Under Insulation
Preventing Steam/Condensate System Accidents
Proper Boiler Care Makes Good Business Sense:Safety Precautions for Drycleaning Businesses
Putting a Stop to Steam Kettle Failure
Quick Actuating Closures
Quick-Actuating Door Failures
Real-Time Radioscopic Examination
Recommendations For A Safe Boiler Room
Recovering Boiler Systems After A Flood
Rendering Plants Require Safety
Repair or Alteration of Pressure Vessels
Residential Water Heater Safety
School Boiler Maintenance Programs: How Safe Are The Children?
Secondary Low-Water Fuel Cutoff Probe: Is It as Safe as You Think?
Short-Term High Temperature Failures
Specification of Rupture Disk Burst Pressure
Steam Traps Affect Boiler Plant Efficiency
Steps to Safety: Guide for Restarting Boilers after Summer Lay-Up
Stress Corrosion Cracking of Steel in Liquefied Ammonia Service - A Recapitulation
Suggested Daily Boiler Log Program
Suggested Maintenance Log Program
System Design, Specifications, Operation, and Inspection of Deaerators
Tack Welding
Temperature And Pressure Relief Valves Often Overlooked
Temperature Considerations for Pressure Relief Valve Application
The Authorized Inspector's Responsibility for Dimensional Inspection
The Effects of Erosion-Corrosion on Power Plant Piping
The Forgotten Boiler That Suddenly Isn't
The Trend of Boiler/Pressure Vessel Incidents: On the Decline?
The Use of Pressure Vessels for Human Occupancy in Clinical Hyberbaric Medicine
Thermally Induced Stress Cycling (Thermal Shock) in Firetube Boilers
Top Ten Boiler and Combustion Safety Issues to Avoid
Typical Improper Repairs of Safety Valves
Wasted Superheat Converted to Hot, Sanitary Water
Water Maintenance Essential to Prevent Boiler Scaling
Water Still Flashes to Steam at 212
Welding Consideration for Pressure Relief Valves
Welding Symbols: A Useful System or Undecipherable Hieroglyphics?
What Should You Do Before Starting Boilers After Summer Lay-Up?
Why? A Question for All Inspectors


Temperature Considerations for Pressure Relief Valve Application


Joseph F. Ball, PE
Director
National Board Pressure Relief Department

Category : Design/Fabrication

Summary: This article was originally published in the Summer 2011 National Board BULLETIN. (2 printed pages)

 


 

The process of selecting or evaluating correct set pressure for pressure relief valve application is relatively straightforward – the set pressure of the pressure relief valve is compared to the pressure vessel maximum allowable working pressure (MAWP). The correct set pressure can be determined by using ASME Code rules and the general principle that at least one valve must be set at or below the MAWP.
 
The Code does not thoroughly explain temperature considerations, and application concerns related to temperature are just as important as proper selection of the correct set pressure. The purpose of this article is to examine some of these concerns when applying pressure relief valves in pressure vessel service.
 
One concern is selecting correct material for pressure relief valve construction. For pressure vessels, service temperature is considered part of the vessel design conditions, and the maximum temperature is used to select allowable stress limits for the chosen vessel material. Design temperature is recorded on the pressure vessel’s data report and nameplate (Section VIII, UG-119). Additionally, minimum design metal temperature (MDMT) is also considered in material selection and marked on the nameplate.
 
Pressure relief valve stamping rules do not require temperature marking on the nameplate; therefore, the valve manufacturer’s literature must be consulted to determine appropriate temperature limits for valve design. The valve must be applied using this data since it represents the mechanical limits of the design. When low temperatures may be encountered, materials appropriate for this application must be selected. Particular attention is called out for application of carbon and low alloy steels when used below -20° F. Impact testing of valve body materials may be required, and alternative materials with better impact resistance characteristics are often selected for low-temperature applications.
 
Once proper material for a valve is identified, temperature effects on valve operation and capacity must also be considered.
 
Valves are required to be tested with test fluid similar to the application fluid [UG-136(d)(4)]. Steam valves are tested with saturated steam by the manufacturer; if they are used in saturated steam service, performance inservice should be very similar to how the valve was set.
 
Valves for gas applications are set using ambient temperature air. Liquid service valves are set using water. The Code makes provisions for use of a cold set pressure which compensates for the difference between test medium temperature during the manufacturer’s original test and the valve’s actual temperature encountered inservice. Temperature of the system fluid, and possibly ambient operating temperature, should both be considered in application of the cold set pressure.
 
Cold set pressure is typically within several percentage points of the specified valve set pressure. For example, a Dresser 1900 series valve specified for 400° F service will have a multiplier of 1.013 applied to the required set pressure to achieve the desired set pressure inservice. (Reference: Dresser maintenance manual 1900-MM, dated 2009.) For most designs in elevated temperature applications, set pressure on the test stand will be higher than the set pressure inservice. This is because of thermal expansion of the valve’s bonnet (where the spring is located), and relaxation of the spring when it is heated above ambient temperature.
 
Both final set pressure (set pressure desired inservice), and cold set pressure are listed on the valve nameplate. Cold set pressure is listed as CDTP (Cold Differential Test Pressure). CDTP also includes a differential value to compensate for the effect of back pressure on a conventional type design (no bellows), with the back pressure compensation first considered.
 
 
Example using the aforementioned Dresser 1900 series valve:
 
A valve is required to open at 500 psig inservice where the service temperature is 400° F, and back pressure = 25 psig.
 
Differential set pressure = 500 psig – 25 psig = 475 psig
Temperature multiplier: 1.013
Cold differential test pressure = 475 psig x 1.013 = 481 psig
 
 
This valve would have a stamped set pressure of 500 psig and a CDTP of 481 psig. Back pressure of 25 psig would also be marked. Once the valve is inservice with specified back pressure applied at service temperature of 400° F, it should open at the desired set pressure of 500 psig.
 
When inservice inspections are performed, stamped set pressure value is compared to the vessel’s MAWP to determine whether set pressure was correctly specified. However, when this valve is tested on a test stand to verify inservice condition, measured set pressure should be compared to the CDTP to evaluate performance.
 
Interestingly, cold set pressure is usually not specified for valves inservice where temperatures are below ambient. The maintenance manual referenced above did not include a multiplier value for cold temperatures. Another manufacturer of valves for cryogenic services reported it did not use a cold set factor for valves in low temperatures. The reason: the pressure relief valve is normally installed in a location where the valve body is at ambient conditions, and the valves are not normally insulated. Therefore, the valve will operate at a temperature not much different than ambient. 
 
Valves used in superheated steam service will also require a temperature correction, even though tested with saturated steam. Superheated steam is steam with energy added so the temperature is above saturation temperature for the given pressure. Under those conditions, a temperature correction is also applied to test set pressure, based upon the difference between saturated steam temperature and the superheat steam temperature. Manufacturer’s literature should always be consulted to determine the proper use of correction factors.
 
Valve capacity is also affected by temperature. Valve capacity markings are reported in standard units of pounds per hour of steam, standard cubic feet per minute of air at 60° F, or gallons per minute of water at 70° F. Service fluid temperature may often be different from standard conditions for capacity marked on the nameplate. A conversion from capacity on the valve nameplate to service fluid must be performed to determine whether valve capacity is correctly sized at service temperature conditions.
 
This calculation can be done using the guidance of ASME Code Section VIII, Appendix 11. Paragraph UG-125(a)(2) of ASME Code Section VIII indicates it is the pressure vessel user’s responsibility to select required pressure relief devices for a pressure vessel prior to initial service. Calculations used to select the pressure relief device should reflect sufficient capacity. When necessary, these calculations must be made available to the inspection organization.
 
Pressure relief valves are provided for the purpose of plant and personnel safety, and consideration of temperature effects on valve set pressure and capacity are some important aspects to be reviewed during selection and inservice inspection of pressure relief valves for pressure vessel applications.






About Us   |  Get Directions   |  Contact Us   |   Disclaimer   |   Logo & Marks Policy   |   Privacy Statement   |   Terms of Use   |   Site Map

Copyright 2017 The National Board of Boiler and Pressure Vessel Inspectors | 1055 Crupper Avenue Columbus, OH 43229 Ph.614.888.8320